Related Problems

O Calculate the total number of electrons present in one mole of methane.

Find (a) the total number and (b) the total mass of neutrons in 7 mg of 14C.

(Assume that mass of a neutron = 1.675×10^{-27} kg).

Find (a) the total number and (b) the total mass of protons in 34 mg of NH3 at STP.

Will the answer change if the temperature and pressure are changed?

Ans:

```
(i) Number of electrons present in 1 molecule of methane (CH<sub>4</sub>)
```

$$\{1(6) + 4(1)\} = 10$$

Number of electrons present in 1 mole i.e., 6.023 × 1023 molecules of methane

```
= 6.022 \times 10^{23} \times 10 = 6.022 \times 10^{24}
```

(ii)(a) Number of atoms of 14C in 1 mole= 6.023 × 1023

Since 1 atom of ¹⁴C contains (14 – 6) i.e., 8 neutrons, the number of neutrons in 14 g of

 14 C is (6.023 × 10²³) ×8. Or, 14 g of 14 C contains (6.022 × 10²³ × 8) neutrons.

Number of neutrons in 7 mg

$$= \frac{6.022 \times 10^{23} \times 8 \times 7 \text{ mg}}{1400 \text{ mg}}$$

 $= 2.4092 \times 10^{21}$

(b) Mass of one neutron = 1.67493×10^{-27} kg

Mass of total neutrons in 7 g of 14C

$$= (2.4092 \times 10^{21}) (1.67493 \times 10^{-27} \text{ kg})$$

$$= 4.0352 \times 10^{-6} \text{ kg}$$

(iii) (a) 1 mole of
$$NH_3 = \{1(14) + 3(1)\}\ g$$
 of NH_3

= 17 g of NH₃

= 6.022× 10²³ molecules of NH₃

Total number of protons present in 1 molecule of NH₃

$$= \{1(7) + 3(1)\}$$

= 10

Number of protons in 6.023 × 10²³ molecules of NH₃

$$= (6.023 \times 10^{23}) (10)$$

$$= 6.023 \times 10^{24}$$

 \Rightarrow 17 g of NH₃ contains (6.023 × 10²⁴) protons. Number

of protons in 34 mg of NH3

$$= \frac{6.022 \times 10^{24} \times 34 \text{ mg}}{17000 \text{ mg}}$$

$$= 1.2046 \times 10^{22}$$

(b) Mass of one proton = 1.67493×10^{-27} kg

Total mass of protons in 34 mg of NH₃

=
$$(1.67493 \times 10^{-27} \text{ kg}) (1.2046 \times 10^{22})$$

 $= 2.0176 \times 10^{-5} \text{ kg}$